Carbon nanotube interaction with extracellular matrix proteins producing scaffolds for tissue engineering
نویسندگان
چکیده
In recent years, significant progress has been made in organ transplantation, surgical reconstruction, and the use of artificial prostheses to treat the loss or failure of an organ or bone tissue. In recent years, considerable attention has been given to carbon nanotubes and collagen composite materials and their applications in the field of tissue engineering due to their minimal foreign-body reactions, an intrinsic antibacterial nature, biocompatibility, biodegradability, and the ability to be molded into various geometries and forms such as porous structures, suitable for cell ingrowth, proliferation, and differentiation. Recently, grafted collagen and some other natural and synthetic polymers with carbon nanotubes have been incorporated to increase the mechanical strength of these composites. Carbon nanotube composites are thus emerging as potential materials for artificial bone and bone regeneration in tissue engineering.
منابع مشابه
Novel Biopolymers/Functionalized Multi-Walled Carbon Nanotube Composite Scaffolds for Cardiac Tissue Engineering
Abstract This work introduces the novel gelatin/chitosan blend scaffolds containing different amounts of functionalized multi-walled carbon nanotubes (f-MWCNTs) up to 0.1wt%, which were prepared by freeze drying (freezing and lyophilization). The composite scaffolds were characterized by Fourier transformed infrared spectroscopy (FTIR) to distinguish the functional groups and different bonds in...
متن کاملElectrospun Nanofibers and their Application in Tissue Repair and Engineering
Introduction: Tissue engineering is the repair and replacement of damaged tissues and requires a combination of cells, growth factor and porous scaffolds. Scaffolds, as one of the main components in tissue engineering, are used as a template for tissue regeneration and induction and guidance of growth of the new and biologically active tissues. An ideal scaffold in tissue engineering, imitating...
متن کاملReinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering
The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...
متن کاملReinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering
The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...
متن کاملCarbon Nanotube Reinforced Bombyx Mori Silk as a Biocomposite Material for Tissue Engineering Applications
Silk fibers are fibrous protein with unique combination of strength and toughness. Its biocompatibility makes it an ideal candidate for various biomedical applications. We hypothesized that composites consisting of silk and carbon nanotube (CNT) will have superior mechanical properties. This paper describes the production of protein based scaffolds having required mechanical properties and acti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012